Search results for "Quasilinear elliptic equations"

showing 4 items of 4 documents

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

2016

Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations −Δpu − μ |x| p |u| p−2 u + m|u| p−2 u = f(u), x ∈ RN , where 1 0 and f is a continuous function. peerReviewed

Comparison principleQuasilinear elliptic equationsHardy's inequalityAsymptotic behaviors
researchProduct

Asymptotic Behaviors of Solutions to quasilinear elliptic Equations with critical Sobolev growth and Hardy potential

2015

Abstract Optimal estimates on the asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations − Δ p u − μ | x | p | u | p − 2 u = Q ( x ) | u | N p N − p − 2 u , x ∈ R N , where 1 p N , 0 ≤ μ ( ( N − p ) / p ) p and Q ∈ L ∞ ( R N ) .

Pure mathematicsApplied Mathematicsmedia_common.quotation_subjectta111010102 general mathematicsMathematical analysisHardy's inequalitycomparison principleInfinity01 natural sciences010101 applied mathematicsSobolev spaceMathematics - Analysis of PDEs35J60 35B33FOS: Mathematicsquasilinear elliptic equationsasymptotic behaviors0101 mathematicsHardy's inequalityAnalysismedia_commonMathematicsAnalysis of PDEs (math.AP)
researchProduct

Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential

2016

Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations

Comparison principleApplied Mathematicsmedia_common.quotation_subjectta111010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsHardy's inequalityInfinity01 natural sciences010101 applied mathematicsQuasilinear elliptic equations0101 mathematicsAsymptotic behaviorsHardy's inequalityAnalysisMathematicsmedia_commonJournal of Mathematical Analysis and Applications
researchProduct

Uniqueness of positive radial solutions to singular critical growth quasilinear elliptic equations

2015

In this paper, we prove that there exists at most one positive radial weak solution to the following quasilinear elliptic equation with singular critical growth \[ \begin{cases} -\Delta_{p}u-{\displaystyle \frac{\mu}{|x|^{p}}|u|^{p-2}u}{\displaystyle =\frac{|u|^{\frac{(N-s)p}{N-p}-2}u}{|x|^{s}}}+\lambda|u|^{p-2}u & \text{in }B,\\ u=0 & \text{on }\partial B, \end{cases} \] where $B$ is an open finite ball in $\mathbb{R}^{N}$ centered at the origin, $1<p<N$, $-\infty<\mu<((N-p)/p)^{p}$, $0\le s<p$ and $\lambda\in\mathbb{R}$. A related limiting problem is also considered.

General MathematicsWeak solutionta111010102 general mathematicsMathematical analysisuniquenessPohozaev identity01 natural sciences010101 applied mathematicsElliptic curveMathematics - Analysis of PDEspositive radial solutionsSingular solutionFOS: Mathematicssingular critical growthquasilinear elliptic equationsasymptotic behaviorsUniqueness0101 mathematics35A24 35B33 35B40 35J75 35J92Analysis of PDEs (math.AP)MathematicsAnnales Academiae Scientiarum Fennicae Mathematica
researchProduct